STATISTICAL MECHANICS IN CHEMISTRY
 Probability, probability distribution, averages, moments

March 1, 2023

Probability (Laplace's definition)

$$
\begin{gathered}
P(A)=\lim _{n \rightarrow \infty} \frac{N(A)}{N} \\
0 \leq P(A) \leq 1 \\
\sum_{A} P(A)=1
\end{gathered}
$$

$A-$ an event (e.g., getting a face of a dice with 6 points in a single throw, getting a head in a single coin throw, etc.),
$N(A)$ - the number of trials in which event A occurred, N - total number of trials.

Opposite events, the space of all events

The opposite event (not A) is usually denoted as \bar{A} (a complement to A). We have

$$
P(A)+P(\bar{A})=1
$$

or

$$
P(\bar{A})=1-P(A)
$$

By E we denote the space of all events. We have

$$
P(E)=1
$$

Conditional probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
P(A \cap B) & =P(A \mid B) P(B)
\end{aligned}
$$

The Venn diagram

Example

Probability of finding a prime number in the set of integers from 1 to 10 . The prime numbers are $1,2,3,5$, and 7 . There are 5 odd and 5 even numbers in the set.

even prime

$$
P(\text { prime } \mid \text { even })=\frac{P(\text { prime } \cap \text { even })}{P(\text { even })}=\frac{0.1}{0.5}=0.2
$$

Example

Probability of finding a prime number in the set of integers from 1 to 10 . The prime numbers are $1,2,3,5$, and 7 . There are 5 odd and 5 even numbers in the set.

odd prime

$$
P(\text { prime } \mid \text { odd })=\frac{P(\text { prime } \cap \text { odd })}{P(\text { odd })}=\frac{0.4}{0.5}=0.8
$$

Example

Probability of finding a prime number in the set of integers from 1 to 10 . The prime numbers are $1,2,3,5$, and 7 . There are 5 odd and 5 even numbers in the set.

$$
\begin{gathered}
P(\text { prime })=P(\text { prime } \cap \text { even })+P(\text { prime } \cap \text { odd })= \\
P(\text { prime } \mid \text { even }) P(\text { even })+P(\text { prime } \mid \text { odd }) P(\text { odd })= \\
0.2 \times 0.5+0.8 \times 0.5=0.5
\end{gathered}
$$

Total probability of event B to happen

$$
\begin{gathered}
P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right) \\
E=\sum_{i} A_{i}
\end{gathered}
$$

The events $A_{1}, \mathrm{~A}_{2} \ldots$, form a complete space of events.
Real life: I lost my house keys while walking my dog. How do I proceed to find them?

Independent events

The A and B events are independent of each other if

$$
\begin{gathered}
P(A \mid B)=P(A) \quad P(B \mid A)=P(B) \\
P(A \cap B)=P(A) P(B)
\end{gathered}
$$

For independent events $A, B, C \ldots$, we have

$$
P(A \cup B \cup C \ldots)=P(A)+P(B)+P(C)+\ldots
$$

Random variables and their distributions

Random variable: a number that is assigned to a given event. Any function of a random variable is a random variable.
Examples:

- The number of points on the face of a dice that turns up.
- A temperature read.
- The mass of a bean picked at random.

Important: that a variable is random does not mean that it will take any value with equal probability. It obeys a certain distribution.

Cumulative distribution function and distribution function

Cumulative distribution function

$$
F(x)=P(y \leq x)
$$

Distribution function

$$
f(x)=\frac{d F(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{P(x<y \leq x+\Delta x)}{\Delta x}
$$

Discrete distribution function

$$
f(n)=P(n)
$$

Cumulative distribution function and distribution function

Discrete distributions

Binomial distrubution

$$
W(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The number of possibilities of a successful draw in n trials with same success and failure probability in a single trial.

$$
P(n, k, p)=\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

The probability of k successful draws in n trials with success probability in a single draw being p.

Discrete distributions

Sample binomial distributions

Discrete distributions

Polynomial distribution

$$
\begin{gathered}
W\left(k_{1}, k_{2}, \ldots k_{m}\right)=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} \\
k_{1}+k_{2}+\ldots k_{m}=n
\end{gathered}
$$

The number of possibilities of selecting object $1 k_{1}$ times, etc., in n trials given the same chance of selecting an object in a single trial.

$$
\begin{gathered}
P\left(k_{1}, k_{2}, \ldots k_{m}, p_{1}, p_{2}, \ldots p_{m}\right)=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}} \\
p_{1}+p_{2}+\ldots+p_{m}=1
\end{gathered}
$$

The probability of a successful selection of object $1 k_{1}$ times, etc., in n trials.

Continuous distribution functions

The uniform distribution

$$
\begin{aligned}
& f(x ; a, b)= \begin{cases}0 & x<a \\
\frac{1}{b-a} & a \leq x \leq b \\
0 & x>b\end{cases} \\
& F(x ; a, b)= \begin{cases}0 & x<a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x>b\end{cases}
\end{aligned}
$$

Continuous distribution functions

The normal distribution

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

$$
F(x ; \mu, \sigma)=\operatorname{erf}\left(\frac{x-\mu}{\sigma}\right)
$$

Continuous distribution functions

Sample multimodal distribution (distance distribution from SAXS measurements)

Moments of probability distribution

Average

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

If the values of $x_{1}, x_{2}, \ldots x_{n}$ occurred $n_{1}, n_{2}, \ldots, n_{m}$ times, respectively,

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i=1}^{m} n_{i} x_{i}=\sum_{i=1}^{m} P_{i} x_{i} \\
n=\sum_{i=1}^{m} n_{i}, \quad P_{i}=\frac{n_{i}}{n}
\end{gathered}
$$

Moments of probability distribution

The most probable value of a random variable is the value for which the distribution has the global maximum. It is equal to the average value for unimodal symmetric distributions.

Moments of probability distribution

Variance

$$
\begin{gathered}
\sigma_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \approx \\
\overline{(x-\bar{x})^{2}}=\overline{x^{2}}-(\bar{x})^{2}
\end{gathered}
$$

When the same results are grouped

$$
\begin{gathered}
\sigma_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{m} n_{i} x_{i}^{2}-\frac{1}{n(n-1)}\left(\sum_{i=1}^{m} n_{i} x_{i}\right)^{2} \\
\approx \sum_{i=1}^{m} P_{i} x_{i}^{2}-\left(\sum_{i=1}^{m} P_{i} x_{i}\right)^{2}
\end{gathered}
$$

Moments of probability distribution

Average for discrete and continuous distribution of random variable x.

$$
\lambda_{1}(\{x\})=\sum_{i=1}^{n} P_{i} x_{i} \quad \lambda_{1}(\{x\})=\int_{-\infty}^{\infty} x P(x) d x
$$

Central moments of discrete and continuous distributions of x

$$
\mu_{k}(\{x\})=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{k} P_{i} \quad \mu_{k}(\{x\})=\int_{-\infty}^{\infty}(x-\bar{x})^{k} P(x) d x
$$

Useful central moments and derived quantities

Variance $\left(\sigma^{2}\right)$ and standard deviation (σ).

$$
\sigma^{2}(\{x\})=\mu_{2}(\{x\})=\int_{-\infty}^{\infty}(x-\bar{x})^{2} f(x) d x, \quad \sigma(\{x\})=\sqrt{\sigma^{2}(\{x\})}
$$

Skewness (γ)

$$
\gamma(\{x\})=\frac{\mu_{3}(\{x\})}{\mu_{2}^{\frac{3}{2}}(\{x\})}=\frac{1}{\sigma^{3}(\{x\})} \int_{-\infty}^{\infty}(x-\bar{x})^{3} f(x)
$$

Kurtosis (κ)

$$
\kappa(\{x\})=\frac{\mu_{4}(\{x\})}{\mu_{2}(\{x\})^{2}}=\frac{1}{\sigma^{4}(\{x\})} \int_{-\infty}^{\infty}(x-\bar{x})^{4} f(x)
$$

Illustration of the standard deviation

Central moments of some distributions

The Central Limit Theorem

Given the random variable x, distributed with mean a and variance b^{2}, the variable

$$
\xi=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

has a normal distribution with mean a and variance b^{2} / n.

Distribution of two random variables, $P(x, y)$. Covariance.

$$
\begin{gathered}
\lambda_{10}=\bar{x} \\
\lambda_{01}=\bar{y} \\
\mu_{20}=\sigma^{2}(\{x\}) \\
\mu_{02}=\sigma^{2}(\{y\}) \\
\mu_{11}=\overline{(x-\bar{x})(y-\bar{y})}=\overline{x y}-\bar{x} \bullet \bar{y}=\operatorname{cov}(\{x\},\{y\})
\end{gathered}
$$

Correlation coefficient

$$
\rho(\{x\},\{y\})=\frac{\operatorname{cov}(\{x\},\{y\})}{\sigma(\{x\}) \sigma(\{y\})}
$$

Examples of uncorrelated and correlated bivariate distributions

